H8 Sample-Data Control of Fuzzy Systems with Input Delay

نویسنده

  • Jun Yoneyama
چکیده

This paper is concerned with H sampled-data control for uncertain fuzzy systems. A new approach to sampled-data control is introduced. The system is modelled as a continuous-time fuzzy system, while in practice, the control input has a piecewise-continuous delay. Sufficient conditions for the closed-loop system with a sampled-data state feedback controller to achieve a prescribed H disturbance attenuation level are given in terms of linear matrix inequalities(LMIs). We derive such conditions via descriptor approach to fuzzy time-delay systems under the assumption that sampling-time is not greater than some prescribed number. As such a prescribed number goes to zero, our conditions coincide with sufficient ones for continuous-time H state feedback control for fuzzy systems. We also propose a design method of sampled-data state feedback controller for uncertain fuzzy systems. Numerical examples are given to illustrate our sampled-data state feedback control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY

A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

PD Controller Design with H¥ Performance for Linear Systems with Input Delay

This paper presents H∞ control problem for input-delayed systems. A neutral system approach is considered to the design of PD controller for input delay systems in presence of uncertain time-invariant delay. Using this approach, the resulting closed-loop system turns into a specific time-delay system of neutral type. The significant specification of this neutral system is that its delayed coeff...

متن کامل

بهبود عملکرد سامانه‏های کنترل از طریق شبکه با استفاده از چرخش در قوانین کنترلگر منطق فازی

This paper addresses a novel control method adapted with varying time delay to improve NCS performance. A well-known challenge with NCSs is the stochastic time delay. Conventional controllers such as PID type controllers which are just tuned with a constant time delay could not be a solution for these systems. Fuzzy logic controllers due to their nonlinear characteristic which is compatible wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008